α -Chloro- α , β -unsaturated esters from diethyl 2,2-dichloro-1ethoxyvinyl phosphate

F. Karrenbrock and H.J. Schäfer

Organisch-Chemisches Institut der Universität Münster
Orléans-Ring 23, D-4400 Münster, West Germany

Diethyl 2,2-dichloro-1-ethoxyvinyl phosphate obtained by Perkow reaction from ethyl trichloroacetate and triethyl phosphite affords with carbonyl compounds after lithiation α -chloro- α , β -unsaturated esters.

Villieras $^{1)}$ recently described the synthesis of α -chloro- α , β -unsaturated esters ($\underline{2}$) by reacting carbonyl compounds with $\underline{\text{in situ}}$ generated diethyl 1-chloro-1-ethoxycarbonyl-1-lithiomethane phosphonate. We found that the unsaturated esters $\underline{2}$ can be prepared alternatively by lithiation of diethyl 2,2-dichloro-1-ethoxyvinyl phosphate ($\underline{1}$) and reaction with aldehydes and ketones (Scheme, Table)

 $\underline{\mathbf{1}}$ can be prepared in 83 % yield from ethyl trichloroacetate and triethyl phosphite $^{2)}$.

Table: α -Chloro- α , β -unsaturated esters from diethyl 2,2-dichloro-1-ethoxyvinyl phosphate.

Carbonyl compound	product ^{a)}	İ	yield ^{b)}	<u>E/Z</u> -ratio ^{C)}
Cyclohexanone	C1 ¹⁾ CO ₂ C ₂ H ₅	3=	78 %	-
Nonanal ^{d)}	n-C ₈ H ₁₇ -CH=C C1 CO ₂ C ₂ H ₅	<u>4</u>	55 %	E/Z = 42/58
Benzaldehyde	C ₆ H ₅ -CH=C Cl ¹⁾	51	85 %	E/Z = 47/53
2-Methy1-2-propenal	CH ₂ =C-CH=C CO ₂ C ₂ H ₅	<u>6</u>	50 %	E/Z = 34/66
Hydrolysis with 2 N HCl	H ₅ C ₂ O ₂ C-CH-POC ₂ H ₅ 3)	7	68 %	- and mass spectra

a) The structures 3 - 7 were characterized by their IR-, 1H-NMR- and mass spectra.
 b) Isolated yield calculated on 1. c) The E/Z-ratio was determined by G.L.C. analysis from the crude product. d) Before addition of the carbonyl compound 1 - 2 ml hexamethyl-phosphorous triamide were added to the reaction mixture.

This work was supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen and the Fonds der chemischen Industrie.

- 1) J. Villieras, P. Perriot and J.F. Normant, Synthesis, 31 (1978).
- 2) F. W. Lichtentaler, Chem. Rev. 61, 607 (1961).
- 3) W. Grell and H. Machleidt, Liebigs Ann. Chem. 643, 134 (1966).

(Received in UK 23 May 1979)